11 research outputs found

    Hétérogénéité des neutrophiles dans l’asthme équin

    Full text link
    Les granulocytes de faible densité (LDGs) sont un sous-type de neutrophiles mis en évidence initialement dans le sang de patients atteints de différentes maladies telles que le lupus érythémateux systémique ou le psoriasis. Cependant, des études rapportent également leur présence chez des individus sains. On connait mal à ce jour les caractéristiques des LDGs, notamment en ce qui a trait à leur profil inflammatoire. De plus, leur biogenèse demeure toujours mal connue. Mes travaux de maîtrise visaient à comparer les propriétés des LDGs à celles des neutrophiles de densité normale (NDNs). Pour ce faire, 8 chevaux atteints d’asthme équin sévère et 11 chevaux sains bien caractérisés ont été sélectionnés pour l’étude et sur lesquels des isolations de NDNs ainsi que des LDGs ont été réalisées. La morphologie des neutrophiles a ensuite été évaluée par microscopie optique. Le contenu en myéloperoxidase, un composant des granules primaires azurophiles des neutrophiles, et la présence de récepteurs du N-formylméthionine-leucyl-phénylalanine (fMLP-R) ont été évalués par cytométrie de flux et immunofluorescence, respectivement. Enfin, la capacité fonctionnelle de ces cellules à produire spontanément des pièges extracellulaires des neutrophiles (NETs) a été étudiée in vitro par microscopie confocale. Les résultats démontrent que le nombre de LDGs est augmenté dans le sang des chevaux asthmatiques lors d'exacerbation de la maladie. De plus, ces cellules présentent une morphologie différente puisqu’elles sont de taille plus petite et contiennent plus de fMLP-R que les NDNs. Le contenu en myéloperoxidase est cependant similaire dans les deux populations de neutrophiles. Enfin, les LDGs produisent plus de NETs, et sont plus sensibles aux stimuli activateurs que les NDNs. Ces caractéristiques sont similaires dans les 2 groupes de chevaux suggérant ainsi que ce sont des propriétés intrinsèques des LDGs et qu’ils représentent une population cellulaire préactivée et qui de plus, est majoritairement mature. Cette étude caractérise et compare pour la première fois les LDGs chez des animaux sains et ceux retrouvés chez des animaux atteints d’une maladie inflammatoire chronique.Low-density granulocytes (LDGs) are a subset of neutrophils first described in the bloodstream upon pathological conditions. However, several studies also reported the presence of these cells in the blood of healthy patients. Whether LDGs characteristics, especially their enhanced pro-inflammatory profile, are specific to this subset of neutrophils and not related to disease states is unknown. Thus, we sought to compare the properties of LDGs to those of autologous normal-density neutrophils (NDNs), in both health and disease. We studied 8 horses with severe equine asthma and 11 healthy animals. Neutrophil morphology was studied using optical microscopy, and content in myeloperoxidase and N-formylmethionine-leucyl-phenylalanine receptors (fMLP-R) evaluated using flow cytometry and immunofluorescence, respectively. Confocal microscopy was used to determine their functional capacity to spontaneously release neutrophil extracellular traps (NETs) stimulating with phorbol-12-myristate-13-acetate (PMA). LDGs were smaller and contained more fMLP-R than NDNs, but myeloperoxidase content was similar in both populations of neutrophils. They also had an increased capacity to produce NETs, and were more sensitive to activation stimuli. These characteristics were similar in both healthy and diseased horses, suggesting that these are intrinsic properties of LDGs. Furthermore, these results suggest that LDGs represent a population of primed and predominantly mature cells. Our study is the first to characterize LDGs in health, and to compare their characteristics with those of animals with a naturally occurring disease

    Exercise‐induced airflow changes in horses with asthma measured by electrical impedance tomography

    Full text link
    Background: Equine asthma (EA) causes airflow impairment, which increases in severity with exercise. Electrical impedance tomography (EIT) is an imaging technique that can detect airflow changes in standing healthy horses during a histamine provocation test. Objectives: To explore EIT-calculated flow variables before and after exercise in healthy horses and horses with mild-to-moderate (MEA) and severe equine asthma (SEA). Animals: Nine healthy horses 9 horses diagnosed with MEA and 5 with SEA were prospectively included. Methods: Recordings were performed before and after 15 minutes of lunging. Absolute values from global and regional peak inspiratory (PIF, positive value) and expiratory (PEF, negative value) flows were calculated. Data were analyzed using a mixed model analysis followed by Bonferroni's multiple comparisons test to evaluate the impact of exercise and diagnosis on flow indices. Results: Control horses after exercise had significantly lower global PEF and PIF compared to horses with SEA (mean difference [95% confidence interval, CI]: 0.0859 arbitrary units [AU; 0.0339-0.1379], P < .001 and 0.0726 AU [0.0264-0.1188], P = .001, respectively) and horses with MEA (0.0561 AU [0.0129-0.0994], P = .007 and 0.0587 AU [0.0202-0.0973], P = .002, respectively). No other significant differences were detected. Conclusions and clinical importance: Electrical impedance tomography derived PIF and PEF differed significantly between healthy horses and horses with SEA or MEA after exercise, but not before exercise. Differences between MEA and SEA were not observed, but the study population was small

    Thoracic Electrical Impedance Tomography—The 2022 Veterinary Consensus Statement

    Full text link
    Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis

    Update on neutrophil function in severe inflammation

    Get PDF
    Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation

    Exercise-induced airflow changes in horses with asthma measured by electrical impedance tomography.

    Get PDF
    BACKGROUND Equine asthma (EA) causes airflow impairment, which increases in severity with exercise. Electrical impedance tomography (EIT) is an imaging technique that can detect airflow changes in standing healthy horses during a histamine provocation test. OBJECTIVES To explore EIT-calculated flow variables before and after exercise in healthy horses and horses with mild-to-moderate (MEA) and severe equine asthma (SEA). ANIMALS Nine healthy horses 9 horses diagnosed with MEA and 5 with SEA were prospectively included. METHODS Recordings were performed before and after 15 minutes of lunging. Absolute values from global and regional peak inspiratory (PIF, positive value) and expiratory (PEF, negative value) flows were calculated. Data were analyzed using a mixed model analysis followed by Bonferroni's multiple comparisons test to evaluate the impact of exercise and diagnosis on flow indices. RESULTS Control horses after exercise had significantly lower global PEF and PIF compared to horses with SEA (mean difference [95% confidence interval, CI]: 0.0859 arbitrary units [AU; 0.0339-0.1379], P < .001 and 0.0726 AU [0.0264-0.1188], P = .001, respectively) and horses with MEA (0.0561 AU [0.0129-0.0994], P = .007 and 0.0587 AU [0.0202-0.0973], P = .002, respectively). No other significant differences were detected. CONCLUSIONS AND CLINICAL IMPORTANCE Electrical impedance tomography derived PIF and PEF differed significantly between healthy horses and horses with SEA or MEA after exercise, but not before exercise. Differences between MEA and SEA were not observed, but the study population was small

    A study of the anatomy and injection techniques of the ovine stifle by positive contrast arthrography, computed tomography arthrography and gross anatomical dissection

    Full text link
    Although ovine stifle models are commonly used to study osteoarthritis, meniscal pathology and cruciate ligament injuries and repair, there is little information about the anatomy of the joint or techniques for synovial injections. The objectives of this study were to improve anatomical knowledge of the synovial cavities of the ovine knee and to compare intra-articular injection techniques. Synovial cavities of 24 cadaver hind limbs from 12 adult sheep were investigated by intra-articular resin, positive-contrast arthrography, computed tomography (CT) arthrography and gross anatomical dissection. Communication between femoro-patellar, medial femoro-tibial and lateral femoro-tibial compartments occurred in all cases. The knee joint should be considered as one synovial structure with three communicating compartments. Several unreported features were observed, including a communication between the medial femoro-tibial and lateral femoro-tibial compartments and a latero-caudal recess of the lateral femoro-tibial compartment. No intermeniscal ligament was identified. CT was able to define many anatomical features of the stifle, including the anatomy of the tendinous synovial recess on the lateral aspect of the proximal tibia under the combined tendon of the peroneus tertius, extensor longus digitorum and extensor digiti III proprius. An approach for intra-articular injection into this recess (the subtendinous technique) was assessed and compared with the retropatellar and paraligamentous techniques. All three injection procedures were equally successful, but the subtendinous technique appeared to be most appropriate for synoviocentesis and for injections in therapeutic research protocols with less risk of damaging the articular cartilage
    corecore